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Abstract. The phase-function method is very effective in treating quantum mechanical 
scattering problems for short-range local potentials. We adapt the phase method to deal 
with Coluomb plus Graz non-local separable potentials and derive a closed-form expression 
for the scattering phase shift. Our approach to the problem circumvents in a rather natural 
way the typical difficulties of incorporating the Coulomb interaction in a nuclear phase-shift 
calculation. We demonstrate the usefulness of our constructed expression by means of a 
model calculation. 

1. Introduction 

The phase-function method represents an efficient approach [ 11 to evaluating the 
scattering phase shifts for quantum mechanical problems and is based on the separation 
of the radial wavefunction of the Schrodinger equation into an amplitude part al( k, r )  
and an oscillating part with a variable phase S,(k, r). Physically, this amounts to 
factorising out the two effects of the potential which manifest themselves in deforming 
the wavefunction and in producing the scattering phases [2]. The function Sl(k,  r), 
called the phase function, has at each point the meaning of the phase shift of the 
wavefunction for scattering by the potential truncated at a distance r. A completely 
amputated potential will not produce any phase shift. Thus Sl(k,  0) = 0. For a local 
potential SI(  k, r) satisfies a first-order non-linear differential equation. The scattering 
phase shift SI (  k) is obtained by solving this equation from the origin to the asymptotic 
region with the initial condition S,(  k, 0) = 0. During the solution of the phase equation, 
S l ( k ,  r )  is built up by the potential as one moves away from the origin and it reaches 
its asymptotic value as soon as one gets out of the range of the potential. Obviously, 
S l ( k )  = limr+m S,(k,  r). Once the phase function is known determination of the ampli- 
tude function reduces to a trivial problem. 

In contrast to the local case, the phase function S, (k ,  r) for a non-local potential 
does not have a simple physical meaning with regard to the accumulation of phases. 
A non-local potential couples the wavefunction at one point with its values at all other 
points. This implies that accumulation of phase depends on the wavefunction for all 
values of r. Therefore, it is of considerable interest to explore the possibility of extending 
the phase approach to the case of scattering on non-local potentials. For general 
non-local potentials the phase equation has a very complicated mathematical structure 

t Based in part on a PhD thesis to be submitted by one of the authors (GCS) to Jadavpur University, 
Calcutta-700 032, India. 
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[3]. In the special case of a separable potential, however, the phase function can be 
written in closed form without solving the phase equation. This can be seen as follows. 

The radial Schrodinger equation for a rank-hi separable potential is given by 

where f f ’ ) ( r )  and g i ’ ) ( r )  are the form factors of the potential and A!” is the strength 
parameter. Here the two-body centre of mass energy E = k 2 >  0. We work in units in 
which h 2 / 2 m  is unity. We now convert (1) to an integral equation with the help of 
the Green function 

- k - ’ ( i (  k r )< , (  k r ’ )  - </( kr)yf (  k r ’ ) )  r’ < r 
r ’ >  r 

GjR’( r, r ’ )  = 

satisfying a regular boundary condition. This gives 
I. 

Ur(k,  r ) = i ( k r ) - k - ’  c A $ ’ ) d ! ’ ’ ( k )  J dr’ ( ~ ( k r ) < / ( ~ r ’ ) - < / ( k r ) ” ( k r ~ ) ) f , ( ” ( r f )  (3) 
1 = 1  0 

with 

For the Riccati-Bessel functions i( kr )  and <,( kr )  we shall follow the phase convention 
of Calogero [ l ]  with the Hankel function of the first kind written as h*j”(x) = 
- < / ( x )  + iyr(x). Introducing the phase and amplitude functions by 

N 

a , (k ,  r )  cos &(k, r )  = 1 - k-’ A i ’ ) d ! ’ ) ( k )  dr‘ </(kr’)f/’)(r’) (4a)  
1 = 1  I: 

r = l  i: 
and 

N 

a r ( k ,  r )  sin Sf(k ,  r ) =  - K 1  A i r ) d i r ) ( k )  d r r i ( k r ’ ) f J r ) ( r f )  (4b) 

u,(/c, r )  = ar(k,  r)(cos ~ , ( k ,  r ) i (kr)-s in  af (k ,  r ) < , ( k r ) ) .  

then (3) can be expressed as 

( 5 )  

From (4a)  and (46) we have 

Expression ( 6 )  for the phase function involves the unknown quantity d j ” ( k ) .  Since 
(3) represents an inhomogenous integral equation with a degenerate kernel, it can be 
solved to write 

N 

1 ai””( k )  Yy)(  k ) .  
1 

d$’ ) (  k )  = 
detNAf(k) , = I  

(7) 



Coulomb-distorted nuclear scattering 

The elements of the Fredholm determinant det Af( k) are 

AI’.J’(k) = 6, + k-‘A)” loK l: dr’ dr  g y ) (  r )  cl( kr)f j , (  k r ’ )  - $,( kr)T,( k r ‘ ) } f : ‘ ) (  r f ) .  

The quantities a!””(k )  stand for the cofactors of the A;””(k) .  We also define 

Using ( 7 )  in ( 6 )  we obtain 

tan Sf(k, r )  = - C ~j”a!’*”(k)  Y O )  (k) 1; dr’T,(kr’)f;’)(r’) 
N 

I . J = 1  

In the limit r + a ,  (10) gives the scattering phase shift in terms of the transforms of 
the regular and irregular solutions of the free-particle Schrodinger equation by the 
form factors of the potential and one does not require solving the phase equation to 
get the phase shift. In general, the forms of f / ’ ) ( r )  and g; ‘ ) ( r )  are quite simple for 
most of the separable representations of the nucleon-nucleon interaction so that 
integrals like dr i (kr)gj’)(r) ,  {: d r  < , ( k r ) f [ i ) ( r ) ,  etc, can be expressed in closed form. 

In the non-relativistic model for proton-proton scattering one would add a repulsive 
Coulomb interaction to the separable potential considered above. The object of the 
present paper is to treat the Coulomb-distorted nuclear scattering within the framework 
of the phase method. The calculation of the phase function or the phase shift for such 
a problem need not start with the kinetic energy as a zero-order Hamiltonian. Instead, 
one should begin by calculating the states, Green function, etc, for a model Hamiltonian 
that involves the Coulomb interaction. In P 2 we deal with the Coulomb plus rank-N 
separable potential. We present a case study in § 3 and derive a closed form expression 
for the ‘So proton-proton scattering phase shift. Our derivation based on the phase 
method is quite straightforward and does not rely on the expression for the off-shell 
t matrix and its subsequent adaptation on the energy shell [4]. The final result is given 
in terms of Gaussian hypergeometric functions of complex arguments. We demonstrate 
the usefulness of our expression in § 4 by calculating numbers for p-p scattering phase 
shifts. 

2. Phase method for Coulomb plus separable potentials 

For the Coulomb-distorted rank-N separable potential the Schrodinger equation in 
(1) is modified as 

(:;2 -+k2-1(l+1)r-2-2k77r-1) UY5(k, r ) =  I = 1  A!’)f;’)(r) [ ~ d t g ~ ” ( t ) U ~ ’ ( k ,  t ) .  (11) 

Here 7) is the so-called Sommerfeld parameter. Henceforth, we shall use superscripts 
C and CS for quantities related to pure Coulomb and Coulomb plus separable potentials 
respectively. The integral form of (11) is 

N 

N 

UFs(k, r ) =  kd?(k,  r ) +  C A!”dj”cs(k)  I‘ dr‘f/’)(r’)GF(R)(r, r ’ )  (12) 
1 = 1  0 
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with 

d(’lcs(k) I = lom dt  gi’)( t )  UFs(k, t )  

and bF(k, r), the Coulomb regular solution, written as 

d,C(k, r )  = rl+l e ik r@( /+ l+ iq ,  21+2; -2ikr). 

For usage in the phase method we write the regular Coulomb Green function GF‘R’( r, r’) 
in the form 

G?(R)(r, r’) = Ifl(k)l-2[d?(S r )&(e(-klf , ’ (S r’)+ fl(k)f?(-k, r’)) 

- dFW, r”@(-k)fl(k r )+  S,c(k)fic(-k, r’))l (15) 

for r‘ < r and zero elsewhere. 
The irregular Coulomb function is 

fF( k, r )  = -(2ikr)’+’ e w’* eikr,( 1 + 1 + i 7,21+ 2; -2i kr) (16) 

with f,’(-k, r) =f,’*(k,  r). As with the irregular solution, the Coulomb Jost function 

also satisfies S, ’ ( -k )  = SF*(k) .  In (14) and (16) @( ) and 9( ) stand for the regular 
and irregular confluent hypergeometric functions. From (12) and (15) we write 

u:’((s r)  = aFs(k, r)[kdF(k, r) cos 8Fs(k, r )  

+ & ( , ~ , ‘ ( - k ) f f ( k ,  r ) +  ~ , C ( k ) f ? ( - k ,  r ) )  sin ~ : ’ ( k ,  r)]. (18) 

In deriving (18) we have used 

aFs(k, r )  cos 8FS(k, r) 
N 

= 1 + k - 1 1 ~ ( k ) l - 2  A( i )d ( i ) c s  I I ( k )  I r  dr’fji)(r’) 
i = l  0 

xS(S,C(-k)f,C(k r’)+ f l (k ) f rC(-S  r’)) (190) 

and 

aFs(k, r )  sin S F s ( k ,  r ) =  - / @ ( I c ) ~ - ~  A “ )  ( i ) c s ( k )  jrfii)(r’)q5;(k, r’) dr’. 

Equations (19a) and (19b) can be combined to obtain 

tan S F s ( k ,  r ) =  - A{ i )d j i ) c s (k )  [rf:i)(rf)q5,’(k, r’) dr‘ 

N 

(19b) 
0 

1 dl 
i = l  

N 

i = l  0 

+ Sf( k) f? (  -k, r’)) dr‘) - I .  
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From the integral equation defined by (12), (13) and (15) we have obtained dj"cs(k) 
in the form of (7). More specifically, we now have 

In analogy with (8) and (9) 

and 

Yy'cs(k) = k drdF(k, r)gY)(r). SR 
Understandably, the aj""CS( k)  will now stand for the cofactors of the Ai'3')cs( k). From 
(20)-(23) we get 

tan a:'( k, r) = - 2 A{ i )a~ 'yJ )cs (  k )  Y!J)cs( k )  
N 

dr' $f( k, r')fji)( r') 
i , j = l  0 

N 

x ( l@(k)12 detNAyS(k)+(2k)-' A$i)aii*j)CS(k) YY)cs(k) 
i , j = l  

x 1; dr'fii'(r')(e(-k)f?(&, r')+ $f(k)ff(-k,  rf)))-'. (24) 

We have verified that when the Coulomb potential is turned off by putting 7)  = 0 the 
result in (24) goes over to that given in (10) for the phase function induced by the 
separable potential alone. Thus, in the limit r + 00, (24) will give the scattering phase 
shift for the Coulomb plus rank- N separable potentials in terms of the transforms of 
the regular and irregular Coulomb solutions by the form factors of the potential. In 
the next section we specialise to the s-wave case, omit the subscript I = 0, and obtain 
tan Scs (k )  for the Coulumb plus Graz-I potential [5] in closed analytic form. 

3. A case study 

In the recent past the Graz group obtained a realistic fit to the N-N interaction in 
terms of a separable potential for which f("(r) = g!"(r) (=U$"( r) say). For p-p 
scattering in the ' S o  channel the Graz-I potential [5] is given by 

V(r, r') = A")u(')(r)u(')(r') +A(z)u(2)(r)u(2)(r') ( 2 5 )  

with 

U(')( r) = e-ur (260) 

and 

r) = ( 1  - $r)e-Br. (266) 
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From (24) tan SCS(k) for the potential in (25) is obtained in the form 

tan 6"( k) = - A( ' )a ( ' *J )cs(  k) y(llcs( k) y(JlCs( k) 
I . ]  = 1 

2 

I,] = 1 
kl@( k)I2 det, A''( k )  + A")a('31)CS( k) Y(JjCs( k)x(')cs( k ) ) - '  

(27) 

where 

X'"''( k )  = $ J dr '  U(')( r')( Sc( - k ) f c (  k, r') + Sc( k)fc( -k, r ' ) ) .  (28) 
0 

Using the form factors in (26a) and (26b) we have found the following results: 

and 

In deriving (29a)-(30b) we have made use of the standard integrals [6] 

J e-(IXxS-'*(b, d ;  p x )  dx 
0 

R e s > O  1 +Re s > Re d. 

For the elements of det2ACS( k) we obtained 

[(a +ik)- '  ( 2F1 (1, iq ;  2 + i q ;  - 
(Y -lk 

A(1.l)CS(k)=l-h(1) 
(1 + i q ) ( a  -ik), a +ik  

(33) 
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and 

The quantities u(i*’)cs( k) can be found from (33)-(35). 
From (15) and (22) it is clear that in presenting results for A“Jjcs(k) we had to 

deal with certain non-trivial indefinite integrals. Thus, it is of considerable interest to 
see how these results were obtained. We demonstrate this by calculating the expression 
in (33). 

We have 

The Green function GC‘R’( r, r‘) can be expressed in terms of the outgoing wave Green 
function Gc(+)(r, r‘). This relation is given by 

GC‘R’(r, r’) = GCi+’(r, r ’ ) -2ikrr‘r( l+iv)  eik(‘+r”cD(l+iv, 2; -2 ikr )*( l+ i~ ,  2; -2ikr‘) 

with 
(37) 

(38)  GC“’( r, r’) = 2ikrr‘ e ik( r+r ’ ) r (  1 + iT)cD( 1 + iv, 2; -2ikr<)Y( 1 + iT,2; -2ikr>). 
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Here r< and r, stand for the smaller and greater values of r and r'. In terms of (37)  
we write the double integral in (36) as 

JOE e - (u - ik ) r '  9( 1 + iT,2; -2ikr') dr'. 

In a recent paper [7] two of us have shown that 

(39)  

The single integrals in (39) can be found by the use of (31) and (32). These results 
in conjunction with (39) and (40) reduce (36) in the form given in (33). 

The Fredholm determinant defined through (33)-(35) appears to be quite compli- 
cated. One would, therefore, like to make certain useful checks on the result for 
det A''( k) before using it in further studies. For A ( ' )  = A',' = 0, det2 A''( k) + 

det Ac(k) = 1 .  This is as expected since the Fredholm determinant associated with the 
regular solution of a local potential is unity. We have also verified that [det2 A''( k)],,o 
is the Fredholm determinant for the Graz-I potential given elsewhere [8]. On very 
general grounds one knows that det, Acs(k) should be real. This is, however, not 
apparent from our expression. To demonstrate the reality of our result for det, A''( k) 
we note the following. 

The complex conjugate of the element A('*l'CS(k) is given by 

If the hypergeometric functions in (41) are transformed by the recurrence relation 

we get [A(1,1)CS(k)]* = A(l,l)cs ( k ) ,  thereby proving the reality. Similarly, one can show 
that the other elements of det2 A''( k) are also real. 

In the above we have constructed a closed-form expression for tan a''( k) for the 
Coulomb plus Graz-I potential by using the algorithms of the phase-function method. 
It would, however, be of considerable interest to have an expression for tan S c s ( k ,  r) 
in order to see how the phase function builds up to the phase shift. In appendix 1 we 
present the result for tan a''( k, r )  and show that limr+@ tan a''( k, r) =tan a''( k) as 
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given in (27). In contrast to the result for tan S c s ( k ) ,  we could find only an infinite 
series representation for tan Scs( k, r), which appears to be too heavy for straightforward 
numerical treatment. 

The Graz-I1 potential [9] is an improvement over the original Graz-I potential and 
yields an accurate fit to all experimental data currently accepted for elastic proton- 
proton scattering for 1 s 2. In operator form the Graz-I1 potential is given by 

V, = ~ u ~ ” ) A $ ” ( u { ’ ) ~  + l ~ j ~ ) ) A j ~ ’ ( u { ~ ’ l  (43) 

with 

and 

+ yj” ( 1 - 4( (41+7)pj22’r+ 1 + 1)( 1 + 2) 4( I [/3j22’r]2 + 1)( 1 + 2) ) exp(-p/22)r)] (45) 

An analysis similar to that for the Graz-I potential also applies for the potential in 
(43). In appendix 2 we have presented the results for S , ( k )  for the Coulomb-distorted 
Graz-I1 potential. 

4. ‘So proton-proton scattering phase shift 

The ‘ S o  state in p-p scattering represents the most important partial wave which requires 
an exact treatment of the Coulomb distortion. In (27) we have derived an expression 
for tan gCs( k) for the Coulomb-distorted Graz-I (CDG) separable potential by absorbing 
the Coulomb part of the potential in the comparison functions of the phase method. 
This enables us to bypass the characteristic difficulties associated with the long-range 
nature of the Coulomb interaction and thus include the Coulomb effect rigorously. It 
will therefore be of some interest to study the influence of the Coulomb distortion on 
phase shifts S c s ( k )  by using our expression in (27). We note that our result for 
tan Scs( k) is quite simple. The only non-elementary function which enters our formula 
is of the form zFl( 1, iq;  2+ iq; 2) .  This hypergeometric function can easily be evaluated 
by using its integral representation. 

In the uncoupled ‘ S o  channel the parameters of the Graz-I potential are A(’)= 
-2.395 fm-3, A‘2’ = 58.052 fm-3, a = 1.244 fm-’ and p = 2.3601 fm-’. We have chosen 
to work with (2kq)-’ = 28.80 fm. This is the proton Bohr radius. For these parameters 
we have presented in table 1 the numerical values for sG( k) and SCG(  k) as a function 
of laboratory energy El& between 1 and 40 MeV. Note that the results for the pure 
Graz phase shifts sG( k )  have been obtained by turning off the Coulomb interaction 
in the numerical routine for generating CDG phase shifts s C G ( k ) .  As expected [lo] 
the Couomb-distortion effect is predominant at low and moderate energies. In par- 
ticular, the results for SCG( k )  and the corresponding values of s“( k)  differ significantly 
only for &b s 20 MeV. 

For A ( 2 ’  = 0 the form factors in (25) coincide with those of Yamaguchi [ 113. The 
Yamaguchi potential with A “ ’  = -2.405 fmV3 and a = 1.1 fm-’ provides a reasonable 
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Table 1. Phase shifts S s ( k )  and S c s ( k )  as a function of laboratory energy E,,,. 

Phase shift (deg) 
_ _ _ _ _ ~ ~  ~~ ~ ~~ 

Mathelitsch and 
Present work Plessas (1987) 

El& 
(MeV) s G ( k )  s C G ( k )  S y ( k )  S c y ( k )  S y ( k )  Sty( k )  

1 
2 
3 
4 
5 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 

56.28 
60.23 
6 1.03 
60.96 
60.54 
59.99 
58.74 
57.44 
56.20 
54.97 
53.81 
52.69 
51.66 
50.66 
49.69 
48.72 
47.78 
46.85 
46.01 
45.16 
44.3 1 
43.49 
42.65 

32.68 
45.57 
50.90 
53.43 
54.66 
55.26 
55.46 
55.05 
54.37 
53.57 
52.71 
51.81 
50.96 
50.10 
49.24 
48.37 
47.51 
46.65 
45.85 
45.06 
44.25 
43.46 
42.65 

55.15 
58.75 
59.47 
59.34 
58.86 
58.22 
56.76 
55.24 
53.76 
52.33 
50.97 
49.68 
48.45 
47.29 
46.18 
45.12 
44.11 
43.15 
42.23 
41.35 
40.51 
39.70 
38.92 

31.55 
44.09 
49.34 
51.81 
52.98 
53.49 
53.48 
52.85 
51.94 
50.93 
49.87 
48.80 
47.75 
46.73 
45.73 
44.77 
43.84 
42.95 
42.08 
41.25 
40.45 
39.67 
38.91 

54.70 
58.39 
59.17 
59.08 
58.62 
58.01 
56.57 
55.08 
53.61 

50.84 

48.34 

43.07 

38.85 

31.10 
43.74 
49.05 
51.56 
52.76 
53.29 
53.32 
52.70 
51.81 

49.75 

47.65 

42.87 

38.86 

fit to p-p scattering data [12]. In table 1 we have also presented the results for pure 
Yamaguchi and Coulomb plus Yamaguchi phase shifts ay( k )  and aCy( k )  respectively. 
While the numbers for ay( k )  and Sty( k )  are systematically lower than the correspond- 
ing values for Graz and CDG potentials, they permit comparison with the work of 
Mathelitsch and Plessas [13] who made use of an R-matrix formalism to compute 
scattering phase shifts for the Coulomb-distorted Yamaguchi potential. The results of 
Mathelitsch and Plessas are given in table 1. The data of these authors are slightly 
different from our results for S y ( k )  and S C y ( k )  because they have chosen to work 
with A ( ' )  = -1.529 fm-3. 

The 'residual' phase written as 8, = 8"- S s  is a critical quantity for comparing 
different methods of calculating Coulomb effects. It is of interest to note that at a 
given energy the values of 8, for the three sets of data presented in the table are almost 
in exact agreement. This implies that 8, is not so sensitively dependent on the particular 
interactions as is the case for 8" and 6'. By comparing our results for 8, with those 
of Mathelitsch and Plessas it can be concluded that the phase function method 
developed here can serve as an alternative to the so-called R-matrix formalism for 
dealing with the Coulomb-nuclear problem. 

In the above we have considered the ' S o  scattering phase shifts induced by the 
Coulomb-distorted Graz-I potential. We have calculated similar results for the Graz-I1 
case also. Our values are in exact agreement with those of Schweiger et a1 [9]. 
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Appendix 1. Phase function GCS(k,  r )  for the Coulomb plus Graz-I potential 

From (24) the expression for tan S C S ( k ,  r )  is obtained as 

2 
k l p ( k ) l '  det, A C S ( k )  + c A'"a''3J)cs(k) YO)cs (k )X"'cs (  k, 

i , j = l  

(Al . l )  

with 

X(""(k, r )  = I  dr '  u " ' ( r ' ) ( p ( - k ) f c ( k ,  r ' ) + p ( k ) f c ( - k ,  r')) (A1.2) 

and 

'I: 
y' )cs ( k, dr' u'')(r')4'(k, r'). (A1.3) 

Comparison of equations (23) (specialised for the Graz-I potential), (28), (A1.2) and 
(A1.3) shows that 

lim y ( 1 ) C S  (k, r )  = Y(')cs ( k ) .  (A1.4) 
r-CD 

lim X c l ) cs (  k, r )  = X ' ' ' C S ( k )  
r-a2 

We have presented the results for X " ' C S ( k )  and Yc')cs(k)  in (29) and (30). Other 
quantities which occur in (Al . l )  have been given in (33)-(35). 

We have found 

3c n - I r ( n + l + i 7 )  [(a -ik)r]' 
+ r 2  c c n !  

n = l  s = O  

3) (A1.5) 
n - l  r ( n + i T )  ( 2ik )" [(a -ik)r]' -- 

a -ik S !  
+ c c  2ik(a - ik)  n = O  s = ~  T(n) 
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e""/2 Re { @( - k)2i k.rr e - (P - ik ) r  

2 T ( i g ) r ( i  + i g )  s in(2r )  

2(p  + kg )( 1 + P - i k )  
( P 2  + k2) 

n !  

+ f i  2ik(P - 2 )  n=O r = O  r ( n )  

(A1.6) 

- kr2 e - (o - ik ) r  f T(n + 1 + i q )  [(a -ik)rIs 
r ( l + i g )  n = l  s = O  n !  

(A1.7) 

and 

r3 
x [ 2 ( p + k g ) + r ( p 2 + k 2 ) ] + ( P 2 + k 2 ) ( P  -ik)'r3}- r ( l + i g )  

(A1.8) 

It is easy to see that in the limit r + c o  (A1.5)-(A1.8) yield the results in (29) and (30). 
This serves as a useful check on our results for X(""(k, r) and Y'i)cs(k, r). Thus 
(Al . l )  together with (29)-(35) and (A1.5)-(A1.8) give our desired expression for 
tan P( k, r). 
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Appendix 2. SFS(k) for the Coulomb plus Craz-I1 potential 

The form factors in (44) and (45) can be rewritten as 

(rl U$‘)) = 2-’(/!)-’r’ 

and 

(A2.1) 

(A2.2) 

For this type of form factors it is also possible to derive an analytical formula for 
tan SFs(k) .  From (24) we see that the quantities of interest are 

Xji)“( k) = Re (e( - k) lom d r  vji)(  r)fF(k, r)) 

Yji)“( k) = k d r  vii’( r)4:( k, r)  laa 
(A2.3) 

(A2.4) 

and 

A!i*J)cs( k) = 8, - A j J )  lom I,’ d r  dr’ GF‘R’(r, r’)u$J)(r)uji)(r’) 

In view of (A2.1) and (A2.2) it is easy to see that the results for 
can be written in terms of the basic integrals 

i, j = 1,2. (A2.5) 

k) and Yji’”(k) 

lom d r  r’ e-@’ff( k, r )  

and 

lom d r  r’ e-@‘4:(k, r)  

and their appropriate derivatives with respect to p. For these integrals we have found 

1,iV-1; 1+2+i77;- P -lk 
er7I2r(21+2) lom d r  rl e-PrfF(k, r )  = 

( 2 i k ) ‘ T ( 1 + 2 + i ~ ) ( p  - ik) ‘  
(A2.6) 

and 

(A2.7) 
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The double integral in (A2.5) can be evaluated from the knowledge of 

GF(R)(a, p )  = Iow J: d r  d r '  (rr ' ) '  e-ar G F ' ~ '  (r, r') e-pr' 

( I + l + i q ) ( a  - ik ) (P  - ik)  
- r (21+ 2) - 

1 , iT- I ;  

1 , iV-I ;  1+2+i77; ( a + i k ) ( p + i k ) ) ]  
( a - i k ) ( p - i k )  ' 

The following derivatives will also be needed: 

2-2'( I!)-2r(21+2) 2( I +  l ) ( a 2 + p 2 +  k2+  ap)  +2k77(a + p )  
(a  + P ) 2 ' + 3  

- - 
( a 2 +  k2) (p2+  k2) 

2 [ ( 1 + 1 ) a + k ~ ]  a - i k  
( a2+k2) '+ '  

- 

4[(1+ l ) p  + kv][(I+ 1 ) a  + k ~ ]  - + a, P )  ( a 2  + k2)( p' + k2) 

(A2.8) 

(A2.9) 

(A2.10) 

2-2'( I!)-2~(21 + 2) 2[( I +  1)( a + 2 p )  + k77](P2 + k2) 
( a 2  + k2)(p2  + k2) [ ( a  + P ) 2 ' + 3  

- - 

4[(1+ 1 ) p  + k ~ l [ ( I +  1 ) a  + kv] (p2+  k2) - 
( a  + p y + 4  

2 [ ( l + l ) ( a 2 + p 2 + k 2 + a / 3 ) + k 7 7 ( a + / 3 )  - [ (2 I + 5)p + (2 I + 3) k' + 2 ap 3 ( a  + P ) 2 ' + 4  

4[(1+ l ) a  + k77][(1+1)p+ks] + 
(a' + k2)'+l 

4[( I +  1)a + k ~ ] { ( p ' +  k2)( I +  1) -2[( I +  l ) p  + k ~ ] [ (  I + 2 ) p  + k ~ ] }  
( a 2 +  k2) (p2+  k2)2 

+ 

p R )  I ( a , P )  (A2.11) 
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2-2f(1!)-2r‘(21 + 2 )  
( a 2  + k 2 ) ’ ( p 2  + k2)‘ 

2 ( I +  I ) ( a 2 +  k 2 ) ( P 2 +  k 2 ) [ a  - 2 k 7  - (21 + 1 ) p ]  [ ( a  + P)’lt4 
- - 

2 ( p 2 +  k 2 ) [ (  I + l ) ( a  + 2 p )  + k 7 ] [ ( 2 1 +  5)a2+ (21 + 3 ) k 2 + 2 a p ]  - 
( a  + p)2“4 

+ ’(”+ k’) [(  I +  l ) a  + k v ] [ (  I +  l ) p  + k v ] [ (  I + 3 ) a 2 +  ( I  + 2 )  k 2  + a p ]  
( a  + P)”+5 

2 [ ( I +  1 ) ( 2 a  + p )  + k 7 ] ( a z +  k 2 )  
- [ ( 2 1 +  5)p2+  ( 2 1 + 3 ) k 2 + 2 a p ]  

( a  + p)2 ‘+4 
4[ ( I + I ) (  a z  + p2  + k’ + aP ) + k q  (a + p )] 

- { P ( . + P ) ( a 2 + k 2 )  

x [ ( I  + 3 ) a 2 +  ( I  + 2 ) k ’ +  a p ] }  

( a  + P ) 2 ’ + 5  

- [ ( 2 1 +  5)p2+  (21+ 3 )  k’+ 2 a p 3  

4[(1+ 1 ) p  + k v ] { ( I +  I)(a’+ k’) - 2 [ (  I +  l ) a  + k v ] [ (  1 + 2 ) a  + k v ] }  
(a2+ k2)’+’ 

+ 

x -  (; ;y 
1 - 4[(~+l)a+kvI{(1+l)(p2+k’)-[(I+1)P+k~l[(~+2)P+kvI} 

( a  + p y 1 + 2  

4I(I+ 1 ) ( P 2 + k 2 )  - [ ( I +  1 ) P  + k v 1 [ ( 1 + 2 ) P  + k q l )  
(a2+ k y ( p ’ +  k 2 ) 2  

+ 
x { ( I  + I ) (  a’ + k‘)  - [ ( I  + 1)a + k v ] [  ( I  + 2 )  + k v ] }  CF(R)( a, P ). 

( A2.12)  
With the single and double integrals given above we have expressed tan a?’( k )  for the 
Coulomb plus Graz-I1 potential in closed analytic form. 
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